Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability.
نویسندگان
چکیده
Methods for seeding high-viability (>85%) three-dimensional (3D) alginate-chondrocyte hydrogel scaffolds are presented that employ photocrosslinking of methacrylate-modified alginate with the photoinitiator VA-086. Comparison with results from several other photoinitiators, including Irgacure 2959, highlights the role of solvent, ultraviolet exposure, and photoinitiator cytotoxicity on process viability of bovine chondrocytes in two-dimensional culture. The radicals generated from VA-086 photodissociation are shown to be noncytotoxic at w/v concentrations up to 1.5%, enabling photocrosslinking without significant cell death. The applicability of these photoinitiators for generating 3D tissue-engineered constructs is evaluated by measuring cell viability in 3D constructs with aggregate moduli in the 10-20 kPa range. Hydrogels with encapsulated bovine chondrocytes were constructed with >85% viability using VA-086. While the commonly used Irgacure 2959 is noncytotoxic in its native state and crosslinks the alginate at weight fractions much lower than VA-086, the cytotoxicity of IRG2959's photogenerated radical leads to viabilities below 70% in the conditions tested.
منابع مشابه
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds.
The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomi...
متن کاملFabrication of alginate hydrogel scaffolds and cell viability in calcium-crosslinked alginate hydrogel
................................................................................................................................... II DEDICATIONS ............................................................................................................................ III ACKNOWLEDGEMENTS ...........................................................................................................
متن کاملAlginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds
The purpose of bone tissue engineering is to employ scaffolds, cells, and growth factors to facilitate healing of bone defects. The aim of this study was to assess the viability and osteogenic differentiation of primary human osteoblasts and adipose tissue-derived mesenchymal stem cells from various donors on titanium dioxide (TiO2) scaffolds coated with an alginate hydrogel enriched with ename...
متن کاملThe effect of cerebrospinal fluid-derived exosomes on neural differentiation of adipose mesenchymal stem cells in alginate hydrogel scaffold
Nowadays, researchers have made extensive efforts to find new treatments for nerve damage. Meanwhile, the role of exosomes in cell-cell communication is considered to be a new mechanism. Exosomes can act as suitable differentiating agents. The aim of this study was to investigate the differentiating effect of cerebrospinal fluid-derived exosomes on adipose mesenchymal stem cells in alginate hyd...
متن کامل3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, espec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2011